Search results for "Binding site alteration"

showing 1 items of 1 documents

Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

2010

Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conf…

0106 biological sciencesCrops AgriculturalInsecticidesHelicoverpa punctigeraScienceUNESCO::CIENCIAS DE LA VIDA::Biología de insectos (Entomología)::Entomología generalBacillus thuringiensisBacterial ProteinGenetically modified cropsHelicoverpa armigera01 natural sciencesMicrobiologyLepidoptera genitaliaInsecticide Resistance03 medical and health sciencesBacterial ProteinsBacillus thuringiensisBotanyBacillus thuringiensiBiotechnology/Applied MicrobiologyAnimalsMode of actionBiotechnology/Plant BiotechnologyHelicoverpaInsecticide030304 developmental biology0303 health sciencesMultidisciplinaryBinding SitesbiologyAnimalQfungiBinding SiteRbiology.organism_classificationBinding site alterationHelicoverpa speciesLepidoptera010602 entomologyCry1AcBacillus thuringiensis; Binding site alteration; Helicoverpa speciesMedicine:CIENCIAS DE LA VIDA::Biología de insectos (Entomología)::Entomología general [UNESCO]Plant Biology/Agricultural BiotechnologyResearch ArticleProtein BindingPLoS ONE
researchProduct